Heat Capacity and Thermodynamic Functions of the RFe_2 Compounds (R = Gd, Tb, Dy, Ho, Er, Tm, Lu) over the Temperature Region 8 to 300 K

D. J. GERMANO* AND R. A. BUTERA†

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

AND K. A. GSCHNEIDNER, JR.

Ames Laboratory, ‡ and Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011

Received August 4, 1980; in final form October 27, 1980

Experimental heat capacity data for the Laves phase $R \operatorname{Fe}_2$ intermetallic compounds ($R = \operatorname{Gd}$, Tb, Dy, Ho, Er, Tm, and Lu) have been determined over the temperature range 8 to 300 K. The error in these data is thought to be less than 1%. Smoothed heat capacity values and the thermodynamic functions, $(H_T^\circ - H_0^\circ)$ and S_T° , are reported throughout the temperature range for the $R \operatorname{Fe}_2$ series. In addition, $(G_{266}^\circ - H_0^\circ)$ at 298 K is reported for all the $R \operatorname{Fe}_2$ compounds. These data were analyzed and it was shown that the maxima in the thermodynamic functions near HoFe₂ are due to the magnetic contribution of the lanthanide element. The lattice contribution to the entropy at 300 K was estimated, and from this quantity the Debye temperature was calculated to be about 300 K, which is in good agreement with the low-temperature heat capacity. Furthermore, this analysis indicates that the apparent electronic specific heat constants, γ' , for TbFe₂, DyFe₂, and HoFe₂, reported earlier, are in error.

Introduction

Heat capacity studies of the RFe₂ com-

* Present address: Dow Chemical, USA, Texas Division, Freeport, Tex. 77541.

[†] This work was in part supported by National Science Foundation Grant CHE77/27252.

‡ Operated for the U.S. Department of Energy by Iowa State University under Contract 1 W-7405-ENG-82. This research was partially supported by the Director of Energy Research, Office of Basic Energy Sciences, WPAS-KC-0201. pounds have been undertaken in order to provide essential thermal data which have been lacking. These data can provide some insight into the stability of the $R \operatorname{Fe}_2$ compounds and have led to the characterization of the crystal field interaction in several of these compounds (1).

This paper reports the heat capacity data for the Laves phase RFe_2 compounds: $GdFe_2$, $TbFe_2$, $DyFe_2$, $HoFe_2$, $ErFe_2$, $TmFe_2$, and $LuFe_2$. The smoothed heat

Smooth Thermodynamic Functions for $GdFe_2$			
<u>т</u>	 С "	$H^{\circ}_{\rm T} - H^{\circ}_{\rm O}$	
(K)	(J/mole-K)	(J/mole)	(J/mole-K)
10.00	0.430	1.61	0.28
20.00	2.593	14.26	1.07
30.00	7.960	65.67	3.08
40.00	14.980	179.17	6.30
50.00	22.600	367.01	10.46
60.00	30.350	631.99	15.27
70.00	37.410	971.34	20.49
80.00	43.700	1377.55	25.90
90.00	49.160	1842.26	31.37
100.00	53.890	2358.26	36.80
110.00	57.850	2917.48	42.13
120.00	61.410	3514.07	47.32
130.00	64.560	4144.56	52.36
140.00	67.080	4803.13	57.24
150.00	69.280	5484.96	61.95
160.00	71.160	6187.31	66.48
170.00	72.820	6907.52	70.84
180.00	74.410	7643.71	75.05
190.00	75.910	8395.39	79.11
200.00	77.400	9162.14	83.05
210.00	78.810	9943.27	86.86
220.00	80.110	10738.00	90.56
230.00	81.200	11544.61	94.14
240.00	81.940	12360.47	97.61
250.00	82.650	13183.33	100.97
260.00	83.520	14014.03	104.23
270.00	84.520	14854.15	107.40
280.00	85.540	15704.51	110.49
290.00	86.550	16564.95	113.51
300.00	87.640	17435.74	116.46

TABLE I

capacity data along with the thermodynamic functions $(H_{\rm T}^{\circ} - H_{0}^{\circ})$ and $S_{\rm T}^{\circ}$ are reported over the temperature range 8 to 300 K for each compound. In addition, the values of S_{298}° , $(H_{298}^{\circ} - H_{0}^{\circ})$, and $(G_{298}^{\circ} - H_{0}^{\circ})$ have been tabulated for the series. This work is part of an ongoing program designed to characterize the thermal properties of the $R \operatorname{Fe}_{2}$ series and their corresponding hydrides (1, 2).

Experimental

The $R \operatorname{Fe}_2$ samples ($R = \operatorname{Gd}$, Tb, Dy, Ho,

Er, and Tm) were prepared at the University of Pittsburgh by the cold-boat induction heating technique (3). Spectrographic analysis supplied by the manufacturer indicated that the rare earth metals had a purity of 99.9 wt% with respect to metallic impurities only. The iron was Johnson and Matthey Chemicals, Ltd. Puratronic grade 1 rod. The LuFe₂ compound was prepared at the Ames Laboratory-DOE by arc melting on a water-cooled copper hearth. The Lu metal was 99.99 at.% pure with respect to metallic impurities (H, O, C, and N concentrations were 693, 403, 233, and 25 ppma, respectively). The Fe, which was obtained

TABLE II Smooth Thermodynamic Functions for TbFe2

Т	C _v	$H^{\circ}_{T} - H^{\circ}_{0}$	S _T
(K)	(J/mole-K)	(J/mole)	(J/mole-K)
10.00	0.541	1.71	0.28
20.00	2.820	16.72	1.24
30.00	8.040	68.09	3.25
40.00	15.560	184.43	6.54
50.00	23.860	381.09	10.90
60.00	32.000	660.67	15.97
70.00	39.670	1019.32	21.49
80.00	46.600	1451.28	27.24
90.00	52.740	1948.75	33.10
100.00	57.740	2502.24	38.92
110.00	61.730	3100.31	44.62
120.00	65.250	3735.67	50.15
130.00	68.290	4403.70	55.49
140.00	70.910	5100.07	60.65
150.00	73.140	5820.57	65.62
160.00	74.990	6561.37	70.40
170.00	76.640	7319.62	75.00
180.00	78.280	8094.30	79.42
190.00	79.740	8884.46	83.70
200.00	81.050	9688.49	87.82
210.00	82.350	10505.54	91.81
220.00	83.510	11335.11	95.67
230.00	84.310	12174.53	99.40
240.00	85.030	13021.23	103.00
250.00	85.760	13875.25	106.49
260.00	86.410	14736.08	109.86
270.00	87.090	15603.43	113.14
280.00	88.120	16478.94	116.32
290.00	89.130	17365.60	119.43
300.00	89.690	18260.53	122.46

Smooth Thermodynamic Functions for $DyFe_2$				
 T	С _р	$H^{\circ}_{T} - H^{\circ}_{0}$	S _T	
(K)	(J/mole-K)	(J/mole)	(J/mole-K)	
10.00	0.501	1.64	0.27	
20.00	2.832	15.84	1.16	
30.00	8.192	68.19	3.22	
40.00	15.880	187.38	6.59	
50.00	24.620	389.57	11.07	
60.00	33.230	678.70	16.31	
70.00	41.210	1051.33	22.04	
80.00	48.380	1500.13	28.02	
90.00	54.770	2016.58	34.10	
100.00	59.950	2591.56	40.15	
110.00	64.020	3212.01	46.06	
120.00	67.600	3870.53	51.79	
130.00	70.630	4562.44	57.33	
140.00	73.030	5281.02	62.65	
150.00	75.130	6022.10	67.76	
160.00	76.820	6782.19	72.67	
170.00	78.430	7558.54	77.38	
180.00	79.850	8350.18	81.90	
190.00	81.150	9155.30	86.25	
200.00	82.320	9972.7 6	90.45	
210.00	83.530	10802.11	94.49	
220.00	84.570	11642.80	98.40	
230.00	85.340	12492.71	102.18	
240.00	85.920	13349.01	105.82	
250.00	86.530	14211.14	109.34	
260.00	87.190	15079.72	112.75	
270.00	88.130	15955.97	116.06	
280.00	89.160	16842.68	119.28	
290.00	89.520	17736.62	122.42	
300.00	89.530	18632.05	125.45	

TABLE III Smooth Thermodynamic Functions for DyFe.

from Glidden Iron, Inc., was 99.99 at.% pure with respect to metallic impurities (O, H, C, and N concentrations were 1115, 445, 37, and 24 ppma, respectively). Further details pertaining to the preparation of these samples have been described previously by Germano *et al.* (1).

The adiabatic calorimeter used in this study has been described elsewhere (1, 4). Due to the reduced precision of the adiabatic calorimeter in the temperature region 8 to 15 K, the heat capacity data for the RFe_2 samples in this region were verified by specific heat measurements performed on a pulse calorimeter which is accurate to within 1% of the NBS copper data in this temperature range. Furthermore, based on our results for benzoic acid and copper in the temperature range 15 to 300 K, which agree within 1% of the NBS data, we believe our results on the $R \operatorname{Fe}_2$ phases are accurate within 1% over the temperature range 8 to 300 K.

It had been reported in an earlier paper (1) that the heat capacity data had been truncated at 285 K due to experimental scatter above 285 K. Replacement of the platinum resistance thermometer with another, calibrated in house, removed most of

TABLE IV Smooth Thermodynamic Functions for HoFe2

 T	<i>C</i> ,	$H^{\circ}_{T} - H^{\circ}_{0}$	S [°] t
(K)	(J/mole-K)	(J/mole)	(J/mole-K)
10.00	0.622	1.82	0.28
20.00	4.075	21.69	1.53
30.00	10.975	95.56	4.43
40.00	18.920	244.56	8.66
50.00	27.150	474.81	13.76
60.00	35.320	787.43	19.44
70.00	42.680	1178.30	25.45
80.00	48.920	1636.89	31.57
90.00	54.350	2153.75	37.65
100.00	59.020	2721.23	43.62
110.00	63.100	3332.30	49.44
120.00	66.590	3981.29	55.09
130.00	69.410	4661.87	60.53
140.00	71.800	5368.27	65.77
150.00	73.810	6096.54	70. 79
160.00	75,650	6844.03	75.62
170.00	77.300	7609.04	80.25
180.00	78,790	8389.53	84.71
190.00	80.050	9183.92	89.01
200.00	81.280	9990.4 6	93.15
210.00	82.510	10809.49	97.14
220.00	83.700	11640.69	101.01
230.00	84.570	12482.24	104.75
240.00	85.220	13331.43	108.36
250.00	85.820	14186.55	111.85
260.00	86.730	15049.22	115.24
270.00	87.900	15922.36	118.53
280.00	89.190	16807.69	121.75
290.00	90.290	17705.18	124.90
300.00	91.360	18613.29	127.98

the scatter above 285 K and we now feel justified in reporting our data to 300 K.

Results and Discussion

Tables I through VII¹ contain the

¹ See NAPS document No. 03777 for 14 pages of supplementary material. Order from ASIS/NAPS c/o Microfiche Publications, P.O. Box 3513, Grand Central Station, New York, N.Y. 10163. Remit in advance, in U.S. funds only, for each NAPS Accession Number. Institutions and organizations may use purchase orders when ordering, however, there is a billing charge for this service. Make checks payable to Microfiche Publications. Photocopies are \$5.00. Microfiche are \$3.00. Outside of the U.S. and Canada, postage is \$3.00 for a photocopy or \$1.50 for a fiche.

TABLE V Smooth Thermodynamic Functions for EfFe2

Т	$C_{\mathfrak{p}}$	$H^{\circ}_{\mathrm{T}} - H^{\circ}_{0}$	Sr
(K)	(J/mole-K)	(J/mole)	(J/mole-K)
10.00	0.310	1.20	0.21
20.00	2.708	12.90	0.93
30.00	9.770	72.02	3.23
40.00	18.980	215.18	7.29
50.00	28.850	454.59	12.59
60.00	38.160	790.62	18.69
70.00	45.900	1212.31	25.17
80.00	52.080	1703.39	31.72
90.00	57.120	2250.06	38.15
100.00	61.400	2843.28	44.40
110.00	64.890	3475.50	50.42
120.00	67.490	4137.98	56.19
130.00	69.660	4823.87	61.68
140.00	71.510	5529.94	66.91
150.00	73.200	6253.65	71.90
160.00	74.600	6992.81	76.67
170.00	75.830	7745.02	81.23
180.00	77.000	8509.31	85.60
190.00	78.050	9284.48	89.79
200.00	79.100	10070.26	93.82
210.00	80.100	10866.25	9 7.70
220.00	81.100	11672.25	101.45
230.00	81.880	12487.16	105.07
240.00	82.580	13309.43	108.57
250.00	83.150	14138.11	111.96
260.00	83.700	14972.16	115.23
270.00	84.490	15812.68	118.40
280.00	85.400	16662.39	121.49
290.00	85.710	17518.37	124.49
300.00	85.810	18375.96	127.40

 TABLE VI

 Smooth Thermodynamic Functions for TmFe2

		·	
Т	C_{p}	$H^{\circ}_{\mathrm{T}} - H^{\circ}_{0}$	S°_{T}
(K)	(J/mole-K)	(J/mole)	(J/mole-K)
10.00	0.983	2.12	0.31
20.00	5.877	34.02	2.33
30.00	13.240	128.73	6.06
40.00	21.640	302.93	11.02
50.00	30.490	563.61	16.80
60.00	36.860	902.18	22.95
70.00	43.930	1307.20	29.18
80.00	49.890	1776.7 9	35.45
90.00	54.990	2302.19	41.63
100.00	59.110	2873.40	47.64
110.00	62.420	3481.66	53.44
120.00	65.190	4120.08	58.99
130.00	67.490	4783.85	64.30
140.00	69.450	5468.87	69.38
150.00	71.170	6172.01	74.23
160.00	72.680	6891.46	78.87
170.00	73.970	7624.89	83.32
180.00	75.070	8370.10	87.58
190.00	76.020	9125.61	91.66
200.00	76.920	9890.36	95.58
210.00	77.820	10664.04	99.36
220.00	78.730	11446.79	103.00
230.00	79.450	12238.00	106.52
240.00	80.030	13035.43	109.91
250.00	80.560	13838.38	113.19
260.00	81.110	14 64 6.70	116.36
270.00	81.800	15461.20	119.43
280.00	82.560	16283.03	122.42
290.00	83.310	17112.21	125.33
300.00	84.230	17949.88	128.17

smoothed values of the heat capacity and thermodynamic functions, $(H_T^\circ - H_0^\circ)$ and S_T° , for the seven $R \operatorname{Fe}_2$ compounds over the temperature range 8 to 300 K. The enthalpy and entropy at each temperature were obtained by Simpson's-rule integration under the smoothed data curve of interest; $C_p \operatorname{vs} T$ for enthalpy, and $C_p/T \operatorname{vs} T$ for entropy.

For the GdFe₂, ErFe₂, and LuFe₂ compounds, the heat capacity data in the region $T \le 8$ K were fit to $C_p = \gamma T + \beta T^3$, using the values of γ and β reported by Butera *et al.* (2). For the remaining compounds, the C_p data in this region were fit using the interpolated γ values reported in this paper.

Smooth Thermodynamic Functions for $LuFe_2$			
T	<i>C</i> .,	$H^{\circ}_{T} - H^{\circ}_{0}$	S [°] t
(K)	(J/mole-K)	(J/mole)	(J/mole-K)
10.00	0.355	1.20	0.20
20.00	2.487	13.05	0.94
30.00	6.990	58.81	2.73
40.00	13.200	158.36	5.55
50.00	20.435	326.14	9.27
60.00	27.620	566.67	13.63
70.00	34.199	876.74	18.40
80.00	39.999	1247.95	23.35
90.00	45.000	1673.63	28.36
100.00	49.300	2145.83	33.33
110.00	53.100	2658.12	38.21
120.00	56.400	3206.02	42.97
130.00	59.070	3783.56	47.59
140.00	61.300	4385.66	52.05
150.00	63.200	5008.36	56.35
160.00	65.000	5649.44	60.49
170.00	66.630	6307.63	64.48
180.00	68.180	6981.81	68.33
190.00	69.600	7670.76	72.05
200.00	70.780	8372.60	75.65
210.00	71.920	9086.08	79.14
220.00	73.070	98 11.05	82.51
230.00	74.120	10547.01	85.78
240.00	75.140	11293.24	88.95
250.00	76.250	12050.13	92.04
260.00	77.350	12818.16	95.06
270.00	78.500	13597.35	98.00
280.00	79.650	14387.90	100.87
290.00	80.820	15190.90	103.69
300.00	81.810	16004.05	106.45

TABLE VII

Table VIII contains the tabulated values of $(H_{298}^{\circ} - H_{0}^{\circ})$, S_{298}° , and $(G_{298}^{\circ} - H_{0}^{\circ})$ for the RFe_2 compounds. These values seem to follow a trend in which the maximum value in each occurs at or neat the HoFe₂ compound. A similar trend was noted by Butera et al. (2) in the electronic contribution to the heat capacity in the temperature range 1.5 to 10 K.

A closer examination, however, shows that the maxima in the thermodynamic functions at holmium are to be expected because of a magnetic contribution from the rare earth metal, as discussed below. Furthermore, this analysis also indicates that the apparent maximum in the electronic contribution is probably due to impurities in the $R \operatorname{Fe}_2$ compounds with $R = \operatorname{Tb}_2$, Dy, and Ho.

At room temperature (300 K) the total measured entropy, $S_{\rm T}$, is given by

$$S_{\rm T} = S_{\rm L} + S_{\rm E} + S_{\rm M}^{\rm RE} + S_{\rm M}^{\rm Fe},$$
 (1)

where $S_{\rm L}$ is the lattice contribution, $S_{\rm E}$ is the electronic contribution, and S_{M}^{RE} and S_{M}^{FE} are the respective magnetic contributions from the rare earth and iron atoms to the entropy. $S_{\rm L}$ is assumed to be given by the Debye theory. S_E is the entropy calculated from the electronic specific heat constant, γ , assuming γ remains constant up to 300 K. The S_{M}^{RE} term is given by

$$S_{\rm M}^{\rm RE} = R \ln(2J + 1), \qquad (2)$$

where R is the gas constant and J is the total quantum number for the particular magnetic lanthanide metal. But at 300 K the S_{M}^{RE} value does not reach the full theoretical value because of the splitting of the Jmanifold by the crystal field such that at 300 K all states are not occupied. The value of $S_{\rm M}^{\rm RE}$ at 300 K is determined from the excess heat capacity after the heat capacity of the LuFe₂ compound is subtracted from the magnetic $R \operatorname{Fe}_2$ phase as outlined by Germano et al. (1). The full magnetic contribution to the entropy from the iron atom, $S_{\rm Fe}^{\rm theor}$, is given by an expression similar to Eq. (2), except J is replaced by the spin quantum number, assumed to be $\frac{3}{2}$ (the

TABLE VIII

Compound	S [°] ₂₉₈ (J/mole-K)	$(H_{298}^{\circ} - H_{0}^{\circ})$ (J/mole)	$(G_{298}^{\circ} - H_{0}^{\circ})$ (J/mole)
GdFe₂	115.88	17261	- 17272
TbFe ₂	121.81	18081	- 18242
DyFe ₂	124.86	18453	- 18776
HoFe ₂	127.37	18431	- 19561
ErFe ₂	126.83	18204	- 19591
TmFe ₂	127.62	17782	-20249
LuFe ₂	105.90	15841	- 15718

value for Fe³⁺). But the full entropy will not be realized until the compound becomes paramagnetic, i.e., above the Curie temperature. Because the ordering in these compounds is due essentially to the iron-iron interactions (5), there will be little or no contribution to the entropy at 300 K, since the Curie temperatures, which vary from 565 K for TmFe₂ to 800 K for GdFe₂ (580 K for LuFe₂) (5), are far above room temperature. We have estimated S_M^{FE} at 300 K to be given by

$$S_{\rm M}^{\rm Fe} = (0.1) (2) \left(\frac{300}{T_{\rm c}}\right) S_{\rm Fe}^{\rm theor},$$
 (3)

where T_c is the Curie temperature. The term $300/T_c$ is a rough scaling factor which takes into account the variation of the ordering temperature of the $R \operatorname{Fe}_2$ phases. The quantity 2 is required since there are two iron atoms per formula unit and the factor 0.1 is introduced because most of the magnetic entropy is associated with the actual ordering near T_c .

We now use Eq. (1) to calculate $S_{\rm L}$ from the other quantities. The value of S_E was first calculated from the experimental values reported for the $R \operatorname{Fe}_2$ by Butera et al. (2) but the resultant $S_{\rm L}$ values, see Table IX, were found to exhibit an overall decrease from $GdFe_2$ to $LuFe_2$. The S_L values did not vary smoothly, but instead showed a sharp dip at HoFe₂. This dip is due to the anomalously high apparent electronic specific heat constant, γ' , for HoFe₂ and also TbFe2 and DyFe2. Band structure calculations for the $R \operatorname{Fe}_2$ phases by Cyrot et al. (6) indicate that the density of states at the Fermi level varies little when one rare earth metal replaces another one. As seen from Fig. 3 in Butera et al. (2), the γ' values for GdFe₂, ErFe₂, and LuFe₂ lie on a straight line, and are consistent with the calculations of Cyrot et al. Thus it is likely that the anomalously high values for $TbFe_2$, DyFe₂, and HoFe₂ are due to impurities in these samples. It is possible that the γ'

TABLE IX LATTICE CONTRIBUTION TO THE ENTROPY, S_L , at 300 K (e.u./mole)

Compound	Using experi- mental γ' value ^a	Assuming γ is constant ^b	Assuming γ varies smoothly ^c
GdFe ₂	102.00	103.94	102.00
TbFe₂	101.03	103.48	101.79
DyFe ₂	98.91	102.73	101.37
HoFe ₂	97.03	102.22	101.19
ErFe ₂	101.03	101.78	101.03
TmFe ₂	101.11	101.47	101.11
LuFe ₂	100.55	100.55	100.55

^{*a*} Apparent electronic specific heat constant as measured by Butera *et al.* (2).

^b Electronic specific heat constant is the same as that of $LuFe_2$ for all RFe_2 .

^c Electronic specific heat constant varies smoothly from the reported values for GdFe₂, ErFe₂, and LuFe₂, which lie on a straight line in a plot of γ vs atomic number of the lanthanide. The other values were estimated from this plot.

values for GdFe₂ and TbFe₂ are also high because of impurities, but the LuFe₂ sample is less likely to be anomalous because it was prepared from much purer starting lanthanide materials than the other $R \operatorname{Fe}_2$ compounds. Because of this possibility, we have calculated $S_{\rm L}$ assuming the electronic specific heat constant remains unchanged for all the $R \operatorname{Fe}_2$ phases and is equal to that of LuFe₂. Calculations have also been made assuming that the electronic specific constant varies smoothly in a linear fashion from GdFe₂ to LuFe₂. The results of these calculations are given in Table IX, and it is seen that $S_{\rm L}$ varies smoothly with no anomalies between GdFe₂ and LuFe₂ in either case. This behavior is as expected, since the Debye temperature should vary slowly across this series of lanthanide compounds and not show any maxima or minima. The Debye temperatures were calculated from the $S_{\rm L}$ values using the tables of Kilpatrick and Sherman (7) and these are listed in

TABLE X Debye Temperatures

	High-temperature values calculated from S _{1.}		Low-temperature
Compound	$\frac{1}{\gamma^a}$	$\frac{\text{Varying}}{\gamma^a}$	measured values
GdFe ₂	290	298	270
TbFe ₂	292	299	280
DyFe ₂	295	301	284
HoFe ₂	297	302	284
ErFe ₂	299	302	300
TmFe ₂	301	302	
LuFe ₂	304	304	296

^a See text or footnotes b and c of Table IX.

Table X along with the experimental values determined from low-temperature heat capacity measurements (2). The agreement between either set of Debye temperatures calculated from the $S_{\rm L}$ values and the experimental $\Theta_{\rm D}$ values determined below 10 K is good. Exact agreement is not expected since the $\Theta_{\rm D}$ values calculated from $S_{\rm L}$ correspond to a high-temperature value which, in general, differ by as much as 10% from values determined near 0 K. It is important to note that the $\Theta_{\rm D}$ values calculated from $S_{\rm L}$ do vary smoothly from GdFe₂ to LuFe₂ and do change in the same direction as the low-temperature values.

The method used for calculating S_M^{Fe} may be questioned. If in error, the value obtained for S_M^{Fe} is probably too large, but since S_M^{Fe} is only 1 to 1.5% of S_L , it does not significantly affect the values obtained for S_L and Θ_D . If one assumes $S_M^{Fe} = 0$ for all $R \operatorname{Fe}_2$ compounds, the resultant Θ_D values are 4 to 7 K smaller than those given in Table X and they still vary in a smooth manner, increasing from $GdFe_2$ to $LuFe_2$.

Thus from the above analysis it is seen that the maximum in S_T near HoFe₂ is expected and primarily is due to the S_M^{RE} contribution. Furthermore, the above analysis indicates that the large values of γ' of TbFe₂, DyFe₂, and HoFe₂ determined by low-temperature heat capacity measurements are not the true electronic specific heat constant values, but the values for GdFe₂, ErFe₂, and LuFe₂ probably are. It is interesting that the Debye temperatures at 0 K apparently are not affected by the impurities which cause the anomalous γ' values.

References

- D. J. GERMANO, R. A. BUTERA, S. G. SANKAR, AND K. A. GSCHNEIDNER, JR., J. Appl. Phys. 50(11), 7495 (1979).
- R. A. BUTERA, T. J. CLINTON, A. G. MOLDOVAN, S. G. SANKAR, AND K. A. GSCHNEIDNER, JR., J. Appl. Phys. 50(11), 7492 (1979).
- 3. C. KUNESH, Ph.D. Thesis, University of Pittsburgh (1970).
- 4. T. INOUE, Ph.D. Thesis, University of Pittsburgh (1975).
- 5. H. R. KIRCHMAYR AND C. A. POLDY, *in* "Handbook on the Physics and Chemistry of Rare Earths" (K. A. Gschneidner, Jr., and L. Eyring, Eds.), Vol. II, p. 55, North-Holland, Amsterdam (1979).
- 6. M. CYROT, D. GIGNOUX, F. GIVORD, AND M. LAVAGNA, J. Phys. Coll. 40, C5-171 (1979).
- J. E. KILPATRICK AND R. H. SHERMAN, Los Alamos Scientific Laboratory Report LA-3114, October 1964. (Available from Clearinghouse for Federal Scientific and Technical Information, Springfield, Va. 22151.)